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The onset of the back-firing instability is studied in a one-dimensional spatially extended and
dissipative system, where propagating localized solutions become unstable. It corresponds to the
emission in the tail of a solitary wave of a new wave propagating in the opposite direction. The
transition is illustrated, in geometrical terms, using a model normal form equation. ©2004
American Institute of Physics.@DOI: 10.1063/1.1784911#

In spatially extended dynamical systems, the transition
from complex behavior to ordered state may be under-
stood in terms of synchronization. Here we focus atten-
tion on the particular case of synchronization of oscilla-
tions in a one-dimensional spatially extended system
when an external resonant signal is injected. An example
is an array of lasers submitted to an external electric field
whose frequency is close to the self-oscillation of the
units. Thus, we investigate the evolution of a nonlinear
oscillatory medium submitted to a resonant signal. In the
model equation describing the onset of the 1:1 paramet-
ric resonance, the back-firing instability is observed. This
instability appears when a localized propagating pulse
becomes unstable and splits into two new counterpropa-
gating solutions that upon an eventual collision disappear
due to dissipation.

I. INTRODUCTION

The popular paradigm used to study complex dynamics
including the transition to spatio-temporal chaos is the com-
plex Ginzburg–Landau equation~CGLE!, although other av-
enues have been suggested.1–4 Here, we investigate the evo-
lution of a nonlinear oscillatory medium submitted to a
resonant signal where the back-firing instability is observed.5

It is an instability that appears when a localized propagating
pulse becomes unstable and splits into two new counter-
propagating structures that, upon collision, disappear pre-
sumably due to dissipation.6

The successive processes of splitting and annihilation of
the pulses generate a spatiotemporal diagram that looks like
a Sierpinski gasket,7 as seen in Fig. 1. Asymptotically, for
long time intervals, the spatiotemporal evolution appears to
be complex, and this can be understood5 from the perspec-
tive of spatiotemporal intermittency.8 This analogy with in-
termittency rests on the idea that the localized structures and

their interactions are at the origin of the complexity shown in
Fig. 1 with wide regions where the evolution is simple~lami-
nar!. In the context of the CGLE, similar evolutions have
been observed in the regime of defect-chaos turbulence.9 Our
aim is to show that the back-firing instability is a robust
mechanism generating spatiotemporal complexity and, pos-
sibily, chaos. This genericity is found in various systems. For
example, in a model of CO oxidation on Pt~110! surfaces this
phenomenon has been studied,10 or in models of auto-
catalytic chemical reactions,6,11 in nonlinear optics,12 pre-
sumably it occurs in the process of pigmentation observed on
sea-shells,13 in neurodynamics models like in the Morris–
Lecar model,14,15and in fluid-drag experiments.16 Also when
discussing the dynamics of holes and defects in the one-
dimensional CGLE, the back-firing-like instability has been
advocated.2,3,10

As no geometrical arguments providing a qualitative un-
derstanding of the back-firing instability have yet been pro-
posed, we provide here such a geometrical description of the
instability and criteria for its onset.

II. NORMAL FORM AND ARNOLD TONGUE

Let us consider the spatiotemporal dynamics of a one-
dimensional spatially extended oscillating medium subject to
an external oscillatory signal. Let us focus attention on the
1:1 parametric resonance using the following normal form
equation:17,18

At5~11 in!A2~11 ia!uAu2A1~11 ib!Axx1B. ~1!

Equation~1! describes the evolution of the complex ampli-
tude A of the oscillations of the medium, in the reference
frame of the external forcing signal whose amplitude isB.
The variablest andx stand for time and space, respectively.
The quantity ~n2a! measures the detuning between the
~nonlinear! frequency of the medium and the frequency of
the injected signal at threshold. The parameterb accounts for
the dispersion of the medium. System~1! exhibits various
spatiotemporal behaviors, including forms of spatiotemporala!Electronic mail: velarde@fluidos.pluri.ucm.es
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intermittency.1,18 Since Eq.~1! is written in the reference
frame of the external signal, stationary solutions are locked
with the frequency of the forcing. LetAL be the stationary
~in time! and homogeneous~in space! state of Eq.~1!. The
white region of the parameter space of Fig. 2, limited by the
curve B5BT(n,a), is the so-called Arnold tongue.19 It is
inside this domain, that system~1! has the fixed pointAL as
stable solution. Outside of this region,B,BT(n,a), no more
phase locked solutions exist and the medium is oscillating at
a frequency that differs from the external signal. In order to
analyze the back-firing instability, we shall consider the re-
gion where the value ofB is small and near the resonance,
i.e., ~n2a! is small.5

III. PHASE KINKS AND NUCLEATION SOLUTIONS

Let us search for nonhomogeneous solutions of Eq.~1!.
Inside the Arnold tongue,B.BT(n,a), and for low enough
values of the parameterB, nonhomogeneous propagating so-
lutions have been observed in the numerical simulations.5,20

These structures connect asymptotically in space the stable
rest stateAL . In fact, one can interpret these propagating
entities as to 2p-phase kinks by observing the behavior of
the phase of the complex fieldA of the pulse, as shown in
Fig. 3~a!. Due to its unsteadiness, the pulse represents a dis-
placement of a local unlocked region.

Localized propagating structures, like phase kinks, are
found by searching for solutions of Eq.~1! in the moving
frame,j5x2Vt, whereV is the velocity of the phase kink.
This change of variables allows us to reduce the partial dif-

ferential equation~1! to an ordinary differential equation
~ODE!. In this ~ODE! dynamical system, the phase kink is a
homoclinic orbit of the fixed point,AL , when j→6`. It
exists provided the unstable manifold ofAL intersects tan-
gentially the stable manifold ofAL .21 Counting arguments
allow one to provide the necessary conditions for obtaining
the tangential intersection.1 In our system, the connection is
never satisfied except if one free parameter is suitably ad-
justed. The free parameter here is the velocity,V, of the
phase kink. This is a classical mechanism for velocity selec-
tion for moving interfaces in nonvariational systems.21 Since
we want to solve a boundary value problem, computing the
velocity is not a straightforward task. We opt to use the con-
tinuation softwareAUTO9722 and use as an initial guess a
phase kink and its estimated velocity obtained in the numeri-
cal simulation of Eq.~1!.

Figure 3~a! shows such a spatial profile of a phase kink.
We have also done a numerical continuation of the phase
kink solutions in the parameter space. Givena and n, the
control parameter,B, is varied and the corresponding veloc-
ity, V, is found. Our numerical computations show that phase
kinks exist only for a limited range of values ofB. A neces-
sary condition for the existence of a phase kink is the pres-
ence of the stable fixed point,AL , in system~1!. This is why
the domain of existence starts exactly at the edge of the
Arnold tongue andB.BT(n,a). By increasing the value of
the parameter,B, a fold @Fig. 3~b!# occurs atB5BSN(n,a).
Accordingly, the interval providing the existence of the
phase kink isBT(n,a),B,BSN(n,a). Due to the presence
of the fold atB5BSN(n,a), two values of the velocity,V,
are found in this interval, hence the coexistence of two phase
kinks. At B5BSN(n,a) we have a saddle-node bifurcation,
where both phase kinks disappear. The linear stability analy-
sis of the two pulses has been assessed numerically with a
pseudo-spectral technique, using 500 modes. As expected,
inside the Arnold tongue and whenB,BSN(n,a), system
~1! has a stable phase kink~denotedf2), and an unstable
one ~denotedf1); both disappear at the saddle-node bifur-
cation point,B5BSN(n,a).

Inside the intervalBT(n,a),B,BSN(n,a), we know

FIG. 1. Spatiotemporal diagram of the real part ofA in Eq. ~1!. Parameter
values:a52, n52, andb50. Time is running left to right.

FIG. 2. Phase diagram of Eq.~1! obtained forb50 anda51. The white region represents the Arnold tongue. Region I: Bistability between phase kinks and
the locked state,AL . Region II: Stable locked state. Region III: Bistability between the locked state,AL , and the back-firing regime~see Fig. 1!. The dashed
curve corresponds to the saddle-node bifurcation of the pulses,B5BSN(n,a), and the thick solid line at the borders of the Arnold tongue isB5BT(n,a). The
three typical spatiotemporal diagrams of the real part ofA, in domain with size 400, recorded over 1600 units of time, are also shown. Time proceeds as we
move up~vertical axis! in the figures.
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two stable solutionsAL and f2 . In order to create stable
phase kinks, starting from the stable rest stateAL , a finite
perturbation must be applied to the system. For low enough
perturbation amplitudes, the system relaxes to its rest state,
while for high perturbation levels, propagating pulses are
created. Accordingly, there is a barrier separating the two
attractors. Such a separatrix may be provided by the
codimension-one stable manifold of a stationary
solution.23–25 We have found numerically a stationary solu-
tion G(x) in Eq. ~1!. Numerical linear stability analysis
shows that the spectrum ofG(x) has only one eigenvalue
with positive real part. Hence the stable manifold ofG(x),
which we callWs(G), has codimension one, and acts like a
separatrix, as it splits the phase portrait into two regions. One
region has the rest stateAL as an attractor, and the other has
the flow describing the propagation of two counterpropagat-
ing kinks.G is like a nucleation solution, andWs(G) acts as
the nucleation manifold. The nucleation solutions are also
called scattors26 or homoclons.27

IV. THREE SPATIOTEMPORAL REGIMES

Let us now discuss the various spatiotemporal regimes
that have been observed inside the Arnold tongue. The dis-
persive effects~measured byb! may be very complex. For
example, when no forcing exists, i.e.,B50, when 11ab
becomes negative, homogeneous oscillations become un-
stable and the medium exhibits phase turbulence, defect tur-
bulence or spatiotemporal intermittency.1,21,28 The external
forcing may re-synchronize the system when the forcing am-
plitude becomes high enough.18 Here, we restrict consider-
ation to the caseb50 and hence the spatial coupling in the
medium is taken purely diffusive.

We have investigated the phase diagram of Eq.~1! by
integrating it numerically. The numerical schemes for time
integration were either a fourth-order Runge–Kutta method
or either a second-order Adams–Bashforth~Crank–
Nicolson! method. The space derivatives have been com-
puted numerically with a central difference-scheme at
second- or fourth-order precision. Time step is 531022 and
space step is 0.2.

Figure 2 illustrates the three different spatiotemporal be-
haviors observed inside the Arnold tongue. In region I, bista-
bility between the homogeneous solution and stable propa-
gating phase kinks; in region II, the attractor is the locked
stateAL ; in region III, bistability between a complex spa-
tiotemporal behavior and the spatially homogeneous state
AL .

Thus in the spatiotemporal diagram~III ! of Fig. 2 we can
see that the phase kink propagates for a short time interval
and then disappears yielding to a spatiotemporal defect. The
appearance of the defect is necessary, since a 2p-phase jump
is removed in the complex field. After the creation of the
defect, the residual product grows and produces two new
kinks. This residual might be considered as a localized per-
turbation of the homogeneous stable state,AL . If it becomes
big enough it brings the flow over the stable manifold,
Ws(G), of the nucleation solution,G, and hence creates two
new phase kinks. SinceG is symmetric in the space variable,
due to the symmetryx→2x, and the above-mentioned
nucleation barrier, two counterpropagative kinks are created.
This is at the origin of the back-fire instability, as will be
further discussed in Sec. V~see also Ref. 27!.

V. AN EXPLANATION FOR THE BACK-FIRING
INSTABILITY

In order to give a simple description, we restrict our-
selves to studying Eq.~1! in the reference frame of a stable
propagating kink, with Neumann boundary conditions at the
rear and Dirichlet boundary conditions at the front of the
kink A5AL . We shall investigate the codimension-two
point, P, of the phase diagram of Fig. 2 where the three
regions meet. In this parameter region, we look for the func-
tional phase portraits, before and after the saddle-node bifur-
cation of the phase kinks. Each solution of system~1! has a
stable and an unstable manifold, and one can try to under-
stand the evolution by investigating the connections between
these solutions via the manifolds. Accordingly, the spa-
tiotemporal dynamics may then be assessed by following the
flows in the phase portraits. The advantage of this approach
is that the description is purely geometrical.

FIG. 3. ~a! Profile of a phase kink obtained for the parameter values:n50.9, a51, B50.08, b50, andV50.087. The solid~respectively, dashed! line
accounts for the amplitude~respectively, phase! of the solution.~b! Velocity of the phase kink as a function of the parameterB. The solid~respectively, dashed!
line depicts the stable~respectively, unstable! branch.
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We first focus our study in the parameter regime before
the saddle-node bifurcation where we know that the func-
tional phase portrait has four fixed points: the two kinks,
f1,2 , the nucleation solution,G, and the spatially homoge-
neous solution,AL . Due to the saddle-node bifurcation, we
also know thatf1 has an unstable manifold,Wu(f1), of
dimension one, since the eigen-spectrum off1 has only one
real positive eigenvalue. Thus, the heteroclinic connection
betweenf1 andG has codimension one. Hence, we expect
three different cases, depending on the location of the un-
stable manifold,Wu(f1), of f1 , relative to the stable
manifold of G, Ws(G) ~Fig. 4!. The three options are:~A1!
the unstable manifold,Wu(f1), goes under the nucleation
manifold, Ws(G), as seen in Fig. 4~A1!; ~A2! the unstable
manifold, Wu(f1), goes intoWs(G) as pictured in Fig.
4~A2!; ~A3! the unstable manifold,Wu(f1), goes over
Ws(G) as shown in Fig. 4~A3!.

When the saddle-node bifurcation occurs, the two fixed

points,f1 andf2 , coalesce. Thus depending on the loca-
tion of the unstable manifold,Wu(f1), with respect to the
nucleation manifold,Ws(G), prior to this bifurcation, we
obtain three new cases:~B1! the only attractor is the rest
state,A5AL , as seen in Fig. 4~B1!; ~B2! the phase portrait
exhibits a homoclinic connection with the nucleation solu-
tion, as pictured in Fig. 4~B2!; ~B3! a limit cycle is formed,
related to a nearly homoclinic periodic solution, as shown in
Fig. 4~B3!.

In the case~B3!, the flow of the limit cycle passes in the
region where the phase kink exists. As a consequence, one
sees in the numerical simulation of Eq.~1! a propagating
phase kink-like structure~phase kinks are no longer solu-
tions!. After a finite time interval,t, the flow goes away from
this region and the kink is destroyed. Then the flow passes
near the nucleation solution,G, where it stays during another
finite time interval,T. This is the nucleation process. Then
the flow escapes from this region and two counterpropagat-

FIG. 4. Sketch of the functional phase portrait of Eq.~1!. The black disks represent the solutions of the ODE, and the oriented black curves show how the
flow is organized. In order to associate the spatiotemporal dynamics with the flow, we also show the profile of the complex field,A, along the flow.~A1! The
unstable manifold,Wu(f1), goes under the nucleation manifold,Ws(G). ~A2! The unstable manifold,Wu(f1), goes into the nucleation manifold,Ws(G).
~A3! The unstable manifold,Wu(f1), goes over the nucleation manifold,Ws(G). ~B1! The unstable manifold,Wu(f1), goes under the nucleation manifold.
After the saddle-node bifurcation, the only attractor is the homogeneous stable solution.~B2! The unstable manifold,Wu(f1), goes into the nucleation
manifold, thus at the bifurcation point, a homoclinic loop is formed.~B3! The unstable manifold,Wu(f1), goes over the nucleation manifold, and a
quasi-homoclinic loop remains.
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ing kinks are created. The flow goes back subsequently to the
phase kink region, as one phase kink is destroyed at the left
boundary. Since this process occurs periodically one sees a
periodic behavior. If the timeT is small, the pseudo-phase
kink propagates with an almost constant velocity and peri-
odically with a periodt ‘‘back-fires’’ a new kink behind it.

The transition between evolutions I and II is related to
the saddle-node bifurcation of the phase kinks described in
the previous sections@i.e., transition between~A1! and~B1!#.
The transition line observed in the simulation~Fig. 2!, cor-
responds exactly to the bifurcation lineB5BSN(n,a) that
has been computed with the continuation softwareAUTO.

The transition between cases I and III is also related to
the saddle-node bifurcation of pulses. When the phase por-
trait changes from~A3! to ~B3!, a closed loop is formed, and
a limit cycle is created. The birth of a limit cycle due to a
saddle-node bifurcation is an Andronov saddle-node
bifurcation.29 The typical feature of this bifurcation is the
appearance of a limit cycle with a period that diverges at
threshold ast.m21/2, wherem is the distance from the bi-
furcation line.29 The characteristic divergence of the period
has been captured numerically and shown in Fig. 5.

It remains to explain the transition from type II to type
III that leads to the topological change of the phase portrait
from ~B1! to ~B3!. Since a homoclinic loop is formed@Fig.
4~B2!#, this transition is an Andronov homoclinic
bifurcation.29 A nearly homoclinic limit cycle@Fig. 4~B3!#
appears with a period that diverges at threshold asT
5(1/l)log(1/e), wheree is the distance to the bifurcation,

andl is the unstable eigenvalue of the saddle point to which
the homoclinic cycle tends to. In our context, the saddle
point is the nucleation solution,G,29 andl is the real positive
eigenvalue that belongs to its spectrum. To substantiate our
claim, the period of the limit cycle has been obtained by
integrating numerically Eq.~1! and the logarithmic behavior
of T is presented in Fig. 6. From the numerical data, we can
evaluate the prefactor of the divergence. It isl50.027865
31024. The eigenvaluel has also been obtained by numeri-
cal computation of the eigenspectrum of the nucleation solu-
tion G(x). We foundl50.02756831024. These two com-
pletely independent findings are in agreement and confirm
the existence of the homoclinic bifurcation.

Let us now consider the back-firing phenomenon when
many pulses propagate. If the phase kinks are well separated,
then each phase kink does not feel the presence of its neigh-
bors. Indeed, the propagating pulses have tails that tend ex-
ponentially fast to the stable rest state,AL . As a conse-
quence, the scenario depicted for one pulse in this section
may then be applied for each pulse present in the fieldA.
Hence in the back-firing regime, each pulse has a finite life-
time proportional tot and the time necessary for creating
counterpropagating pulses is related toT.

For illustration, we have plotted the spatiotemporal re-
cordings of the fieldA in two limit cases. In Fig. 7~a!, near
the saddle-node bifurcation, the back-firing period is domi-
nated by the time,t, associated to the saddle-node bifurca-
tion. The nearly homoclinic cycle evolution is presented in

FIG. 5. ~a! Divergence of the period,t, for the transition from I to III vsm5B2B0 . ~b! Log–log plot of the period vs distance to the threshold. Parameter
values:B0.0.034 741 7,a51, n51.044, andb50.

FIG. 6. ~a! Divergence of the period of phase kink for the transition from II to III vse5nh2n. ~b! Semi-log plot of the period vs distance to the threshold.
Parameter values:B50.034 746,a51, nh51.042 423 24, andb50.

781Chaos, Vol. 14, No. 3, 2004 Back-firing instability

Downloaded 20 Sep 2004 to 128.138.145.173. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Fig. 7~b!, where the time lapse spent near the nucleation
solution is made explicit.

VI. A POSSIBLE MECHANISM FOR SPATIOTEMPORAL
INTERMITTENCY AND CONCLUSIONS

Since the scenario discussed in the preceding sections is
geometric, we expect to offer a robust description with uni-
versality. The first necessary condition for obtaining the
back-firing instability is the saddle-node bifurcations of
pulses. This feature has already been noted in model chemi-
cal systems,10,30 and in the CGLE.2,3 The second necessary
condition is an heteroclinic connection between the stable
manifold of the nucleation solution and the unstable mani-
fold of the unstable pulse.

The unfolding of the bifurcation point,P, has been done
following the phase kink in its moving frame. As a conse-
quence, we underestimated the influence of the neighboring
pulses. The interaction at a given time is expected to be small
due to the exponentially fast convergence of the phase kink
toward the stable state,AL . Note that we earlier assumed
that a collision of two counterpropagative kinks leads to their
annihilation. In fact it appears that at (t,x);(800,700)@Fig.
7~a!#, a phase kink collides~call it R! with a newly created
phase kink~call it L! which survives after the collision.
Close inspection of the collision process shows that the kink,
L, had not been properly formed, and hence the collision
occurs during the nucleation process. The kink, R, just con-
tributed to overcome the nucleation manifold.

The other kind of interaction that we consider to be im-
portant in the evolution is the following memory effect. In
the study of the bifurcation scenario, we have assumed that
the kink propagates in a clean, homogeneous medium where
A5AL . In fact, this hypothesis may be open to discussion.
When the rest state,A5AL , is perturbed locally albeit

slightly, there is a characteristic relaxation time that may be
quite long since we are in the neighborhood of the Arnold
tongue boundary,B5BT(n,a). Accordingly, when a pulse
propagates, it leaves behind a medium that has not com-
pletely relaxed toA5AL . This memory effect can be seen,
for example in Fig. 1 at (t,x);(200,200). There are smooth
gray regions left behind by dying pulses that influence the
subsequent back-firing process at (t,x);(220,200). The
nucleation process involves a very precise threshold and
when one kink undergoes back-firing, the nucleation thresh-
old may be changed due to the history of the medium. In our
analysis, the nucleation manifold is associated to a saddle
point, the nucleation solutionG. For each back-firing process
of each of the phase kinks present in the medium, the nucle-
ation manifold selects whether or not a new kink is going to
be emitted. This feature, already noticed in Ref. 27, is expo-
nentially amplified. It is the reason why for asymptotic long
time intervals~like in Fig. 1!, very complex patterns are ob-
served.
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