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The onset of the back-firing instability is studied in a one-dimensional spatially extended and
dissipative system, where propagating localized solutions become unstable. It corresponds to the
emission in the tail of a solitary wave of a new wave propagating in the opposite direction. The
transition is illustrated, in geometrical terms, using a model normal form equation200@
American Institute of Physics[DOI: 10.1063/1.178491]1

In spatially extended dynamical systems, the transition their interactions are at the origin of the complexity shown in
from complex behavior to ordered state may be under- Fig. 1 with wide regions where the evolution is simgmi-
stood in terms of synchronization. Here we focus atten- nar. In the context of the CGLE, similar evolutions have
tion on the particular case of synchronization of oscilla- been observed in the regime of defect-chaos turbule M.
tions in a one-dimensional spatially extended system aim is to show that the back-firing instability is a robust
when an external resonant signal is injected. An example mechanism generating spatiotemporal complexity and, pos-
is an array of lasers submitted to an external electric field  sibily, chaos. This genericity is found in various systems. For
whose frequency is close to the self-oscillation of the example, in a model of CO oxidation on(lP10) surfaces this
units. Thus, we investigate the evolution of a nonlinear phenomenon has been studtdor in models of auto-
oscillatory medium submitted to a resonant signal. In the  catalytic chemical reactiorfs'! in nonlinear optics? pre-
model equation describing the onset of the 1:1 paramet- sumably it occurs in the process of pigmentation observed on
ric resonance, the back-firing instability is observed. This  sea-shell$? in neurodynamics models like in the Morris—
instability appears when a localized propagating pulse Lecar modef**°and in fluid-drag experiment§ Also when
becomes unstable and splits into two new counterpropa- discussing the dynamics of holes and defects in the one-
gating solutions that upon an eventual collision disappear dimensional CGLE, the back-firing-like instability has been
due to dissipation. advocated:>1°

As no geometrical arguments providing a qualitative un-
derstanding of the back-firing instability have yet been pro-
I. INTRODUCTION posed, we provide here such a geometrical description of the

_ _ instability and criteria for its onset.
The popular paradigm used to study complex dynamics

including the transition to spatio-temporal chaos is the com-
plex Ginzburg—Landau equati¢@GLE), although other av- . NORMAL FORM AND ARNOLD TONGUE
enues have been suggestetiHere, we investigate the evo-

lution-of a nonlinear oscnlatory_ _me_dlum _s_ub_mltted ;[53 4 dimensional spatially extended oscillating medium subject to
resonant signal where the back-firing instability is observed. oy gy4omgq| oscillatory signal. Let us focus attention on the

Itis an instability that appears whe_n a localized propagating . parametric resonance using the following normal form
pulse becomes unstable and splits into two new counteréquationn,ls

propagating structures that, upon collision, disappear pre- _ _ .
sumably due to dissipatich. A=(1+iv)A—(1+ia)|APA+(1+iB)AL+B. (1)
The successive processes of splitting and annihilation _OIquuation(l) describes the evolution of the complex ampli-
the pulses generate a spatiotemporal diagram that looks likgje A of the oscillations of the medium, in the reference
a Sierpinski gasketas seen in Fig. 1. Asymptotically, for fame of the external forcing signal whose amplitudeBis
long time intervals, the spatiotemporal evolution appears t§ e yariableg andx stand for time and space, respectively.
be complex, and this can be underst?_)(mbm the perspec-  the quantity (v—a) measures the detuning between the
tive of spatiotemporal intermittenéyThis analogy with in- (nonlineaj frequency of the medium and the frequency of
termittency rests on the idea that the localized structures ang injected signal at threshold. The paramgeccounts for
the dispersion of the medium. Systgil) exhibits various
3Electronic mail: velarde@fluidos.pluri.ucm.es spatiotemporal behaviors, including forms of spatiotemporal

Let us consider the spatiotemporal dynamics of a one-
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ferential equation(1) to an ordinary differential equation
(ODE). In this (ODE) dynamical system, the phase kink is a
homoclinic orbit of the fixed pointA, , when é&—*w. It
e exists provided the unstable manifold Af intersects tan-
gentially the stable manifold oA, .>* Counting arguments
allow one to provide the necessary conditions for obtaining
the tangential intersectionin our system, the connection is
never satisfied except if one free parameter is suitably ad-
FIG. 1. Spatiotemporal diagrgm qf the rgal partAoi‘n.Eq.(l). Parameter justed. The free parameter here is the velocity, of the
valuesia=2, v=2, andf=0. Time is running left to right. phase kink. This is a classical mechanism for velocity selec-
tion for moving interfaces in nonvariational systemsince
intermittency**® Since Eq.(1) is written in the reference We want to solve a boundary value problem, computing the
frame of the external signal, stationary solutions are lockedelocity is not a straightforward task. We opt to use the con-
with the frequency of the forcing. Lek, be the stationary tinuation softwareauTo972 and use as an initial guess a
(in time) and homogeneougn space state of Eq.(1). The  phase kink and its estimated velocity obtained in the numeri-
white region of the parameter space of Fig. 2, limited by thecal simulation of Eq(1).
curve B=B+(»,a), is the so-called Arnold tongué&.lt is Figure 3a) shows such a spatial profile of a phase kink.
inside this domain, that systeft) has the fixed poinf, as  We have also done a numerical continuation of the phase
stable solution. Outside of this regidB<B+(v,«), no more  kink solutions in the parameter space. Giverand v, the
phase locked solutions exist and the medium is oscillating atontrol parameteiB, is varied and the corresponding veloc-
a frequency that differs from the external signal. In order toity, V, is found. Our numerical computations show that phase
analyze the back-firing instability, we shall consider the re-kinks exist only for a limited range of values Bf A neces-
gion where the value oB is small and near the resonance, sary condition for the existence of a phase kink is the pres-

ie., (v—a) is small® ence of the stable fixed poim,_, in system(1). This is why
the domain of existence starts exactly at the edge of the
lll. PHASE KINKS AND NUCLEATION SOLUTIONS Arnold tongue and3>B+(v,a). By increasing the value of

Let us search for nonhomogeneous solutions of (y. e paramete, a fold [Fig. 3(b)] occurs aB=Bsy(v,a).
Inside the Arnold tongueB>B+(7,«), and for low enough Accord|r.1glyZ the interval providing the existence of the
values of the paramet&, nonhomogeneous propagating so- Phase Kink isSr(»,a) <B<Bs\(»,a). Due to the presence
lutions have been observed in the numerical simulatidfis. Of the fold atB=Bs\(»,a), two values of the velocityy,
These structures connect asymptotically in space the stabffe found in this interval, hence the coexistence of two phase
rest stateA, . In fact, one can interpret these propagatingkinks. At B=Bgs\(»,«) we have a saddle-node bifurcation,
entities as to Z-phase kinks by observing the behavior of where both phase kinks disappear. The linear stability analy-
the phase of the complex fiel of the pulse, as shown in sis of the two pulses has been assessed numerically with a
Fig. 3@). Due to its unsteadiness, the pulse represents a digseudo-spectral technique, using 500 modes. As expected,
placement of a local unlocked region. inside the Arnold tongue and wheB<Bgy(v,a), system

Localized propagating structures, like phase kinks, arél) has a stable phase kirnenoted¢_), and an unstable
found by searching for solutions of E¢l) in the moving one(denoted¢ . ); both disappear at the saddle-node bifur-
frame, £=x—Vt, whereV is the velocity of the phase kink. cation point,B=Bg\(v,«).

This change of variables allows us to reduce the partial dif- Inside the intervaB(v,a)<B<Bg\(v,a), we know
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FIG. 2. Phase diagram of Efl) obtained for3=0 anda=1. The white region represents the Arnold tongue. Region I: Bistability between phase kinks and
the locked stated . Region II: Stable locked state. Region llI: Bistability between the locked sAateand the back-firing regimésee Fig. 1 The dashed

curve corresponds to the saddle-node bifurcation of the pulBse8g,(», @), and the thick solid line at the borders of the Arnold tonguB+sB+(v,a). The

three typical spatiotemporal diagrams of the real par,ah domain with size 400, recorded over 1600 units of time, are also shown. Time proceeds as we
move up(vertical axig in the figures.
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FIG. 3. (a) Profile of a phase kink obtained for the parameter values).9, a=1, B=0.08, =0, andV=0.087. The solidrespectively, dashedine
accounts for the amplitudeespectively, phagef the solution(b) Velocity of the phase kink as a function of the param&eFhe solid(respectively, dashed

line depicts the stabl@espectively, unstableéoranch.

two stable solutiong\, and ¢_. In order to create stable Figure 2 illustrates the three different spatiotemporal be-
phase kinks, starting from the stable rest state a finite  haviors observed inside the Arnold tongue. In region |, bista-
perturbation must be applied to the system. For low enougbility between the homogeneous solution and stable propa-
perturbation amplitudes, the system relaxes to its rest statgating phase kinks; in region Il, the attractor is the locked
while for high perturbation levels, propagating pulses arestateA, ; in region lll, bistability between a complex spa-
created. Accordingly, there is a barrier separating the twdiotemporal behavior and the spatially homogeneous state
attractors. Such a separatrix may be provided by thé\ .
codimension-one stable manifold of a stationary  Thus in the spatiotemporal diagraiil ) of Fig. 2 we can
solution?>~2We have found numerically a stationary solu- see that the phase kink propagates for a short time interval
tion I'(x) in Eg. (1). Numerical linear stability analysis and then disappears yielding to a spatiotemporal defect. The
shows that the spectrum @f(x) has only one eigenvalue appearance of the defect is necessary, since-phHase jump
with positive real part. Hence the stable manifoldId), is removed in the complex field. After the creation of the
which we callbV(T"), has codimension one, and acts like adefect, the residual product grows and produces two new
separatrix, as it splits the phase portrait into two regions. Ong&inks. This residual might be considered as a localized per-
region has the rest stafg as an attractor, and the other hasturbation of the homogeneous stable stéte, If it becomes

the flow describing the propagation of two counterpropagatbig enough it brings the flow over the stable manifold,
ing kinks. T is like a nucleation solution, and/;(I') acts as  W4(I"), of the nucleation solutiorl;, and hence creates two
the nucleation manifold. The nucleation solutions are alsmew phase kinks. Sindé is symmetric in the space variable,

called scattor€ or homoclong’ due to the symmetryx— —x, and the above-mentioned
nucleation barrier, two counterpropagative kinks are created.

This is at the origin of the back-fire instability, as will be

IV. THREE SPATIOTEMPORAL REGIMES further discussed in Sec. ee also Ref. 27

Let us now discuss the various spatiotemporal regimes
that have been observed inside the Arnold tongue. The dig; AN EXPLANATION FOR THE BACK-FIRING
persive effectmeasured by3) may be very complex. For INSTABILITY

example, when no forcing exists, i.e8=0, when X«
becomes negative, homogeneous oscillations become un- In order to give a simple description, we restrict our-

stable and the medium exhibits phase turbulence, defect tuselves to studying EdJ1) in the reference frame of a stable
bulence or spatiotemporal intermittenic3?? The external propagating kink, with Neumann boundary conditions at the
forcing may re-synchronize the system when the forcing amrear and Dirichlet boundary conditions at the front of the
plitude becomes high enougfiHere, we restrict consider- kink A=A, . We shall investigate the codimension-two
ation to the cas@=0 and hence the spatial coupling in the point, P, of the phase diagram of Fig. 2 where the three
medium is taken purely diffusive. regions meet. In this parameter region, we look for the func-

We have investigated the phase diagram of @¢.by tional phase portraits, before and after the saddle-node bifur-
integrating it numerically. The numerical schemes for timecation of the phase kinks. Each solution of systémhas a
integration were either a fourth-order Runge—Kutta methodtable and an unstable manifold, and one can try to under-
or either a second-order Adams—BashfortiCrank—  stand the evolution by investigating the connections between
Nicolson method. The space derivatives have been comthese solutions via the manifolds. Accordingly, the spa-
puted numerically with a central difference-scheme atiotemporal dynamics may then be assessed by following the
second- or fourth-order precision. Time step is 802 and  flows in the phase portraits. The advantage of this approach
space step is 0.2. is that the description is purely geometrical.
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FIG. 4. Sketch of the functional phase portrait of Ef. The black disks represent the solutions of the ODE, and the oriented black curves show how the
flow is organized. In order to associate the spatiotemporal dynamics with the flow, we also show the profile of the compteafaeid, the flow(Al) The
unstable manifoldV,(¢.), goes under the nucleation manifoldjs(I"). (A2) The unstable manifoldV,(¢. ), goes into the nucleation manifolay(I").

(A3) The unstable manifold/V,(¢.), goes over the nucleation manifold/;(I"). (B1) The unstable manifold),(¢.), goes under the nucleation manifold.
After the saddle-node bifurcation, the only attractor is the homogeneous stable salB&pihe unstable manifoldyV,(¢.), goes into the nucleation
manifold, thus at the bifurcation point, a homoclinic loop is formé83) The unstable manifoldV,(¢ ), goes over the nucleation manifold, and a
guasi-homoclinic loop remains.

We first focus our study in the parameter regime beforgooints, ¢, and ¢_, coalesce. Thus depending on the loca-
the saddle-node bifurcation where we know that the funciion of the unstable manifoldV,(#.), with respect to the
tional phase portrait has four fixed points: the two kinks,nucleation manifold,Wy(I"), prior to this bifurcation, we
¢ _, the nucleation solutiorl;, and the spatially homoge- obtain three new case$B1) the only attractor is the rest
neous solutionA, . Due to the saddle-node bifurcation, we state, A=A, as seen in Fig.®1); (B2) the phase portrait
also know that¢, has an unstable manifold),(¢.), of  exhibits a homoclinic connection with the nucleation solu-
dimension one, since the eigen-spectrungqfhas only one tion, as pictured in Fig. @2); (B3) a limit cycle is formed,
real positive eigenvalue. Thus, the heteroclinic connectiomelated to a nearly homoclinic periodic solution, as shown in
betweeng, andI’ has codimension one. Hence, we expectFig. 4B3).
three different cases, depending on the location of the un- In the casdB3), the flow of the limit cycle passes in the
stable manifold,W,(# ), of ¢, relative to the stable region where the phase kink exists. As a consequence, one
manifold of I', W,(I") (Fig. 4). The three options aré¢Al) sees in the numerical simulation of E(l) a propagating
the unstable manifoldyV,(¢.), goes under the nucleation phase kink-like structuréphase kinks are no longer solu-
manifold, W,(I'), as seen in Fig. @1); (A2) the unstable tionsg). After a finite time intervalz, the flow goes away from
manifold, Wy(# ), goes intoWy(I') as pictured in Fig. this region and the kink is destroyed. Then the flow passes
4(A2); (A3) the unstable manifold)V,(¢.), goes over near the nucleation solutioh, where it stays during another
Ws(I') as shown in Fig. éA3). finite time interval,T. This is the nucleation process. Then

When the saddle-node bifurcation occurs, the two fixedhe flow escapes from this region and two counterpropagat-
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FIG. 5. (a) Divergence of the periods, for the transition from | to Ill vsu=B—By. (b) Log—log plot of the period vs distance to the threshold. Parameter
values:By=0.034 741 7 =1, v=1.044, andB=0.

ing kinks are created. The flow goes back subsequently to thend\ is the unstable eigenvalue of the saddle point to which
phase kink region, as one phase kink is destroyed at the lefthe homoclinic cycle tends to. In our context, the saddle
boundary. Since this process occurs periodically one seesgoint is the nucleation solutio,?® andX is the real positive
periodic behavior. If the timd is small, the pseudo-phase eigenvalue that belongs to its spectrum. To substantiate our
kink propagates with an almost constant velocity and periclaim, the period of the limit cycle has been obtained by
odically with a periodr “back-fires” a new kink behind it.  integrating numerically Eqi1) and the logarithmic behavior
The transition between evolutions | and Il is related togf T jg presented in Fig. 6. From the numerical data, we can
the saddle-node bifurcation of the phase kinks described i, 5uate the prefactor of the divergence. Inis 0.02785
the previous sectior{s.e., transition betwee1) and(B1)]. % 10~4. The eigenvalua has also been obtained by numeri-

The transition line observgd in the si_mulati(jFig. 2), cor- cal computation of the eigenspectrum of the nucleation solu-
responds exactly to the bifurcation lirg=Bg\(v,a) that tion ['(x). We found = 0.0275+ 8 104, These two com-

has been CO”.‘P“ted with the continuation S.Oft”meo' letely independent findings are in agreement and confirm
The transition between cases | and lll is also related t . L .
he existence of the homoclinic bifurcation.

the saddle-node bifurcation of pulses. When the phase por- Let us now consider the back-firing phenomenon when

trait changes fronfA3) to (B3), a closed loop is formed, and .
a limit cycle is created. The birth of a limit cycle due to a many pulses propagate. If the phase kinks are well separated,

saddle-node bifurcation is an Andronov saddle-nodéhen each phase kink does not feel the presence of its neigh-
bifurcation?® The typical feature of this bifurcation is the P°OrS- Indeed, the propagating pulses have tails that tend ex-
appearance of a limit cycle with a period that diverges aPonentially fast to the stable rest stafy, . As a conse-
threshold as=u 2 wherep is the distance from the bi- duence, the scenario depicted for one pulse in this section
furcation line?® The characteristic divergence of the period My then be applied for each pulse present in the feld
has been captured numerically and shown in Fig. 5. Hence in the back-firing regime, each pulse has a finite life-
It remains to explain the transition from type II to type time proportional tor and the time necessary for creating
Il that leads to the topological change of the phase portraifounterpropagating pulses is relatedrto
from (B1) to (B3). Since a homoclinic loop is formeldFig. For illustration, we have plotted the spatiotemporal re-
4(B2)], this transiton is an Andronov homoclinic cordings of the fieldA in two limit cases. In Fig. @), near
bifurcation?® A nearly homoclinic limit cycle[Fig. 4B3)]  the saddle-node bifurcation, the back-firing period is domi-
appears with a period that diverges at threshold Tas nated by the timez, associated to the saddle-node bifurca-
=(1/\)log(1/e), wheree is the distance to the bifurcation, tion. The nearly homoclinic cycle evolution is presented in

: : : : (b)
200 f e 00 PN e SRR
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400 * * * *
0 2 4 6 -20 -15 -10 -5

10
FIG. 6. (a) Divergence of the period of phase kink for the transition from Il to lllezsv,— v. (b) Semi-log plot of the period vs distance to the threshold.

Parameter value88=0.034 746,a=1, v,=1.042 423 24, an@=0.
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FIG. 7. Spatiotemporal diagrams of the back-firing regime near transit@rsear the homoclinic bifurcation corresponding to a change in the phase portrait
from (B1) to (B3); parameter valuest=1, 8=0, v=1.05, andB=0.37.(b) Near the saddle-node bifurcation of the pulses corresponding to a change in the
phase portrait fronfA3) to (B3); parameters are the same(asbut with B=0.04.

Fig. 7(b), where the time lapse spent near the nucleatiorslightly, there is a characteristic relaxation time that may be
solution is made explicit. quite long since we are in the neighborhood of the Arnold
tongue boundaryB=B+(v,a). Accordingly, when a pulse

V1. A POSSIBLE MECHANISM FOR SPATIOTEMPORAL propagates, it leaves behind a medium that has not com-
INTERMITTENCY AND CONCLUSIONS pletely relaxed toA=A, . This memory effect can be seen,
for example in Fig. 1 att(x) ~(200,200). There are smooth

Since the scenario discussed in the preceding sections ifay regions left behind by dying pulses that influence the
geometric, we expect to offer a robust description with uni-sypsequent back-firing process atxj~(220,200). The
versality. The first necessary condition for obtaining thenycleation process involves a very precise threshold and
back-firing instability is the saddle-node bifurcations of when one kink undergoes back-firing, the nucleation thresh-
pulses. This feature has already been noted in model chemiid may be changed due to the history of the medium. In our
cal systems?*°and in the CGLE:® The second necessary analysis, the nucleation manifold is associated to a saddle
condition is an heteroclinic connection between the Stabl%oint, the nucleation solutioR. For each back-ﬁring process
manifold of the nucleation solution and the unstable mani'of each of the phase kinks present in the medium, the nucle-
fold of the unstable pulse. ation manifold selects whether or not a new kink is going to

The unfolding of the bifurcation poink, has been done  pe emitted. This feature, already noticed in Ref. 27, is expo-
following the phase kink in its moving frame. As a conse-nentially amplified. It is the reason why for asymptotic long
quence, we underestimated the influence of the neighboringme intervals(like in Fig. 1), very complex patterns are ob-
pulses. The interaction at a given time is expected to be smaleryed.
due to the exponentially fast convergence of the phase kink
toward the stable staté, . Note that we earlier assumed
that a collision of two counterpropagative kinks leads to theirACKNOWLEDGMENTS
annihilation. In fact it appears that at X) ~ (800,700)[Fig.

7 hase kink collidegcall it R) with |
(@], a phase kink collidegcall it R) with a newly created o ™o 007A  pikovsky for fruitful discussions, This
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