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Front Reversals, Wave Traps, and Twisted Spirals in Periodically Forced Oscillatory Media
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A new kind of nonlinear nonequilibrium patterns—twisted spiral waves—is predicted for periodically
forced oscillatory reaction-diffusion media. We show, furthermore, that, in such media, spatial regions
with modified local properties may act as traps where propagating waves can be stored and released in a
controlled way. Underlying both phenomena is the effect of the wavelength-dependent propagation
reversal of traveling phase fronts, always possible when homogeneous oscillations are modulationally
stable without forcing. The analysis is performed using as a model the complex Ginzburg-Landau
equation, applicable for reaction-diffusion systems in the vicinity of a supercritical Hopf bifurcation.
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An important problem in the engineering of self-
organized systems is how to control spontaneously formed
waves and patterns. For the oscillatory Belousov-
Zhabotinsky reaction, application of global periodic forc-
ing was shown to produce various cluster patterns [1–3]
and induce turbulent regimes [4]. In the experiments with
catalytic CO oxidation on platinum, where bulk oscilla-
tions were unstable and spatiotemporal chaos spontane-
ously developed, application of periodic forcing allowed
suppression of chemical turbulence, production of inter-
mittent regimes with cascades of amplitude defects, and
generation of oscillating cellular and labyrinthine patterns
[5]. In both reactions, oscillations emerge through a Hopf
bifurcation of a stationary uniform state and thus the
observed behavior is characteristic for a broad class of
systems. The universal description of reaction-diffusion
systems near a supercritical Hopf bifurcation is provided
by the complex Ginzburg-Landau equation [6]. The action
of global periodic forcing on the systems described by this
equation was first considered by Coullet and Emilsson
[7,8]. Under sufficiently strong resonant n:1 forcing, oscil-
lations are entrained and stationary or traveling
2�=n-fronts become possible. The 2� phase fronts for
the 1:1 forcing are known as kinks (or phase slips). They
represent traveling localized structures, because the states
differing by the phase of 2� are physically identical.
Therefore, as noticed in Ref. [8], they bear similarity
with pulses in excitable media. Traveling � fronts under
2:1 forcing represent nonequilibrium Bloch walls [9].
Kinks and traveling Bloch walls are elementary wave
patterns under forcing conditions. Instabilities of kinks
lead to backfiring and development of intermittent regimes
with reproduction of amplitude defects [10–12]. Trans-
verse instabilities of nonequilibrium planar Bloch walls
give origin to the Bloch turbulence [4]. In heterogeneous
media near a Bloch-Ising transition, complex behavior due
to reflections of Bloch waves on Ising domains has been
found [13].

Here, our attention is focused on the properties of peri-
odic trains formed by kinks or traveling Bloch walls. Our
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analysis reveals that, depending on the parameters of the
oscillatory medium and the spatial period of a train, it can
undergo a reversal of its propagation direction. We show
how this phenomenon can be used to design traps for
traveling kinks and Bloch walls. Furthermore, we find
that a new kind of pattern—twisted rotated spiral
waves—exists in oscillatory media under the conditions
of front propagation reversal.

Under global resonant n:1 forcing, the complex
Ginzburg-Landau equation (CGLE) for the slow complex
oscillation amplitude � is [7]

_� � �1� i���� �1� i��j�j2�� �1� i��r2�

� B����n�1; (1)

where detuning � � !0 �!e=n is determined by the
natural (!0) and forcing (!e) frequencies and B is the
forcing amplitude. Oscillations are entrained by forcing
in the parameter region known as the Arnold tongue
[Fig. 1(a)]. Inside this region, kinks (n � 1) and Bloch
walls (n � 2) traveling at a constant velocity are possible
(see Refs. [7,10,11]). Moreover, wave trains formed by
periodic sequences of such phase fronts can also be ob-
served there.

Any traveling phase front is characterized by its chi-
rality: ‘‘right’’ if the phase increases after front propagation
and ‘‘left’’ if it decreases after that. A similar definition can
be accepted for traveling wave trains. It is convenient
furthermore to define the front velocity V in such a way
that it is always positive (V > 0) if a front propagates to
increase the oscillation phase and negative (V < 0) other-
wise. With this convention, all right fronts move at a
positive velocity, while the velocity of any left phase front
is negative. Note that the chirality is not defined for a
standing front.

The velocity of an individual phase front is uniquely
determined by the properties of the medium and the forcing
parameters. For wave trains, it additionally depends on the
spatial period � of a train. Figure 1(b) shows dependences
V��� for two different values of the coefficient �, obtained
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FIG. 1 (color online). Front propagation reversal (n � 1; � �
0:5). (a) Standing kinks are found along the dashed line (� �
1:8) in the Arnold tongue. (b) Dependences of velocity V on
spatial train period � for � � 1:8 (solid line) and � � 5:0
(dashed line); here � � 0:5525, B � 0:053. Space-time dia-
grams showing the behavior of wave patterns after termination
of a pacemaker in media with (c) � � 5:0 and (d) � � 1:8, the
same other parameters as in part (b); local values of Re��x; t� are
shown in gray scale.
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by numerical continuation of wave train solutions of
Eq. (1) with n � 1. When � � 5:0, velocity V remains
positive for all spatial periods. This means that both a
solitary kink and any kink train in such a medium possess
the right chirality. In contrast to this, kinks move at a
positive velocity (and have the right chirality) only for
sufficiently short spatial periods at � � 1:8. At a critical
spatial period �c, the propagation velocity of the train
vanishes and V���< 0 when � > �c. Thus, solitary kinks
and kink trains with large periods have the opposite left
chirality in the latter case.

To illustrate the difference in the properties of wave
patterns in two such media, we consider the following
example. Suppose that the local oscillation frequency is
increased in the center of a one-dimensional medium. If
periodic 1:1 forcing is applied, the local frequency increase
can still be so large that oscillators in the central region are
not entrained and perform autonomous oscillations. This
region acts then as a pacemaker which periodically gen-
erates phase slips propagating away as a kink train with the
right chirality. Suppose now that this heterogeneity is
removed and the activity of the pacemaker is terminated.
When � � 5:0, generated kinks continue to move away
from the center [Fig. 1(c)]. The situation is however dif-
ferent, if � � 1:8 [see Fig. 1(d)]. As spatial intervals
between the kinks get larger, they subsequently reverse
their propagation direction and move into the central re-
gion where repeated annihilations take place. This is be-
cause single kinks and the kink trains with sufficiently
large periods are characterized by the left chirality in this
medium and propagate in such a way that the oscillation
phase becomes decreased.
01830
For sufficiently small forcing amplitudes B, the train
velocity V��� can be analytically estimated. In this pa-
rameter region, the dynamics is approximately described
[7] by the reduced equation for the local oscillation phase
’,

_’ � �� �� B
���������������
1� �2

p
sinn’� a�r’�2 � br2’;

(2)

where ’ � �� arctan� and � � � exp�i��. For brevity,
we have introduced here notations b � 1� �� and a �
�� �. Note that such reduced phase description is justi-
fied, when b > 0 so that uniform oscillations are modula-
tionally (Benjamin-Feir) stable. The kinks exist for
B> BA, where BA��� � j�� �j=

���������������
1� �2
p

.
Applying the Cole-Hopf transformation ’ � �b=a� lnu,

this phase dynamics equation is transformed to a simple
form analogous to the equation for front propagation in
one-component bistable media [14],

@tu � Q�u� � b@xxu (3)

with the nonlinear function Q�u� � �a=b�u��� ��
B

���������������
1� �2
p

sin�n�b=a� lnu��. The roots uj of equation
Q�u� � 0 under the condition Q0�uj�< 0 correspond to
stable uniform locked states of the system. Explicitely,
we have

uj � exp
�
a
nb

�
2�j� arcsin

�
�� �

B
���������������
1� �2
p

���
: (4)

Although the system has an infinite sequence j �
1; 2; 3; . . . of such roots, only n of them represent physi-
cally different phase-locked states.

A front train with spatial period � is a solution of Eq. (3)
satisfying periodicity conditions ’�x� �=n� � ’�x� �
2�=n (for n > 1 one spatial period of the pattern consists
of n subsequent 2�=n-fronts). In terms of the variable u,
these conditions take the form

u�x� �=n� � exp�2�a=nb�u�x�: (5)

Thus, the train solutions for u are not periodic, but grow
exponentially with x.

When propagation reversal occurs, a stationary train is
possible. In the stationary case, Eq. (3) has the first integral
�1=2�b�@xu�

2 �W�u� � E, where W�u��
R
Q�u�du�

�a=2b�u2f����2aB
��������������
1��2
p

�nbcos�nb�lnu�=a��2a	
sin�nb�lnu�=a���4a2�n2b2��1g and E is the integration
constant. Using the periodicity condition (5) and the prop-
erty W�uj�1� � exp�4�a=nb�W�uj�, we find that E � 0
for any stationary train. Thus, the wavelength �st of the
stationary train is given by

�st �
Z uj�1

uj

��������������������
�bn2

2W�u�
du

s
: (6)

This result does not depend on the choice of the root j.
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FIG. 2 (color online). Trapping of kinks and Bloch fronts in
the 1D medium. The coefficient � is set to � � 5 and decreased
to � � 1:8 inside the central region of width 300. Left: Kink trap
under the 1:1 resonance, the same parameters as in Fig. 1(b).
Right: Bloch front trap under the 2:1 resonance [B � 0:061, the
same other parameters as in Fig. 1(b)].

FIG. 3 (color online). Trapping of kinks and Bloch fronts in
the two-dimensional medium. The coefficient � is set to � � 5
and decreased to � � 1:8 in the rectangular central region. The
medium parameters are the same as in Fig. 1. The system size is
1000	 1000. Upper panel: Kink trap in 1:1 resonance. The
snapshots of the spatial distribution of Re� are taken at t �
6000, t � 19000 and t � 32000. Lower panel: Bloch wave trap
in 2:1 resonance. Snapshots the spatial distribution of Re� at t �
2000, t � 16000, and t � 46800 (B � 0:061).
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Solitary 2�=n phase fronts are front solutions of Eq. (3),
such that u�x; t� ! uj for x! �1 and u�x; t� ! uj
1 for
x! 1. They can be also viewed as a limit of a periodic
train with �! 1. According to Eq. (6), the wavelength of
a stationary train diverges, if W�uj� � 0. Solving this
equation, we find that stationary solitary 2�=n fronts exist
along the line B � Bst��� given by

Bst �
1

2a
��� ��

���������������������
a2 � n2b2

1� �2

s
: (7)

Note that, in the phase approximation, the boundaries of
the Arnold tongue are B � BA���. The line B � Bst��� is
shown as the dashed line in Fig. 1(a). Along this line, the
reversal of the propagation direction of solitary phase
fronts occurs. Phase fronts with the right chirality (V >
0) are found on the left side of this line, if �> �.

As follows from (6), the condition for existence of sta-
tionary periodic trains is W�uj�< 0. This means that they
are found inside the region of the Arnold tongue, lying
between the line B � Bst��� and the (nearest) boundary of
the tongue [see Fig. 1(a)]. Such a region always exists if
b > 0. For any given set of parameters, the wavelength of
the stationary train can be computed by numerical evalu-
ation of the integral in Eq. (6).

The above analysis shows that front propagation reversal
occurs near any n:1 resonance. For n � 1, stationary kinks
(i.e., 2� fronts) and periodic sequences of standing kinks
are possible (the existence of stationary solitary kinks
under global feedback conditions has previously been
shown [10]). For n � 1, stationary � fronts represent
standing Bloch walls or their periodic sequences. Such
standing structures are different from Ising walls, because
the oscillation amplitude does not vanish here.

The wave propagation reversal can be induced by vary-
ing parameters of the medium. Most conveniently, this can
be done by changing the coefficient � in the CGLE, since
this coefficient does not affect uniform oscillations and is
only important for propagating waves.

The dependence of the wave propagation direction on
the coefficient� can be used to trap kinks and Bloch fronts.
Such traps can be designed by creating spatial regions,
where the coefficient � is locally changed to reverse the
propagation velocity. The left panel in Fig. 2 shows an
example of a kink trap in the one-dimensional medium at
the 1:1 resonance. The value of � is decreased in the
central region. No-flux boundary conditions are used in
all our simulations. Initially, a rapid pacemaker operates at
the left end of the medium. This pacemaker produces a
kink train with a short spatial period. The train enters the
modified central region and passes it with some decelera-
tion. When the pacemaker is terminated, further kinks are
not produced. However, the kinks inside the central modi-
fied region become trapped inside it and form a stationary
pattern with a period corresponding to the velocity rever-
sal. If the central heterogeneity is removed, the stored
pulses would propagate out of it. The right panel in
01830
Fig. 2 demonstrates the trapping of Bloch fronts at the
2:1 resonance. The pacemaker at the left end of the me-
dium produces a train of Bloch fronts.

Similar traps for kinks and Bloch fronts can also be
constructed in two-dimensional media. The upper panel
of Fig. 3 (see also video 1 in Ref. [15]) shows a series of
snapshots where trapping of kinks by a central modified
region is seen. A pacemaker in the lower left corner emits a
kink train with a short spatial period. The first snapshot
shows the kink train passing the rectangular-shaped inho-
mogeneity. Inside the inhomogeneity, the velocity of the
kinks is decreased, resulting in a delay of the kinks at the
upper right corner of the rectangle. In the second snapshot,
the rear end of the kink train has reached the lower left
boundary of the inhomogeneity. The kinks inside the in-
homogeneity close to this boundary can no longer propa-
gate and the kinks outside propagate around the central
region. This leads to the formation of ring-shaped kinks in
the upper right part of the inhomogeneity. As long as new
2-3
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FIG. 4 (color online). Rotation of a twisted spiral. Left: Spatial
distribution of Re�. Right: Position of the spiral at times
t � 0 (solid), t � 340 (dashed), t � 680 (dotted). Parameters
are � � 4:19, � � 0:992, � � 3:9895, B � 0:0455; the system
size is 500	 500. Numerical integration using the explicit Euler
scheme with �x � 0:2 and �t � 0:0025.
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kinks arrive, these rings collapse. When the kink train has
passed the inhomogeneity, the stored kinks form stationary
ring-shaped structures. In the lower panel of Fig. 3 (see
also video 2 in Ref. [15]), trapping of traveling Bloch
fronts at the 2:1 resonance is demonstrated. It proceeds
similar to the respective process for the kinks near the 1:1
resonance. In our simulations, wave traps with various
sizes and with complicated geometries could be created.

A special effect, related to kink propagation reversal, is
the formation of twisted spirals near the 1:1 resonance in
two-dimensional media [Fig. 4 (left panel)]. The central
and outer parts in such a spiral are wound in opposite
directions. These structures are stable, they are observed
in numerical simulations starting with various initial con-
ditions. A twisted spiral rigidly rotates as a whole, retain-
ing its shape. In Fig. 4 (right panel), three subsequent
snapshots of the spiral, separated by a third of the rota-
tion period each, are superimposed (see also video 3 in
Ref. [15]). We see that the instantaneous rotation center
does not coincide with the location of the spiral tip.
Instead, the oppositely wound central part of the spiral is
steadily rotating. Thus, this regime can also be character-
ized as a kind of meandering. Qualitatively, the develop-
ment of twisted spirals can be understood by noticing that
the waves are tightly wound near the center and, therefore,
their propagation direction should be reversed there. In the
displayed simulation, the medium was characterized by
negative dispersion (�< �). Similar behavior has, how-
ever, been found by us in the simulations for the media with
positive wave dispersion (�> �) [16]. By changing the
forcing intensity and frequency, winding and unwinding of
the central part of the spiral can be controlled.

Our theoretical study has shown that, applying periodic
forcing, one can induce propagation reversal of kinks,
Bloch walls, and 2�=n phase fronts for higher resonances
with n > 2. Using this effect, traps for propagating kinks
and other phase fronts can be designed by creating appro-
priate heterogeneities in the medium. In our simulations,
01830
such heterogeneities were introduced by spatial variation
of the coefficient � in the CGLE, but similar effects can be
achieved by varying other parameters of the medium or by
applying inhomogeneous forcing. We have also shown
that, in uniform media with 1:1 forcing, steadily rotating
twisted spirals can develop. Though our results have been
obtained only for the CGLE, we expect that they should be
characteristic for a class of media where oscillations are
not strongly relaxational. Our simulations using a realistic
model of the catalytic surface reaction of CO oxidation on
platinum have shown that the wave propagation reversal
under periodic forcing takes place near a supercritical Hopf
bifurcation in this reaction and that the wave traps can be
constructed there [16]. Another experimental system
where the predictions of our theory can be tested is the
oscillatory photosensitive Belousov-Zhabotinsky reaction.
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